Data Preprocessing
Type of resources
Keywords
Contact for the resource
status
Groups
-
This workflow aims to compare plant species across different natural spaces. The workflow involves downloading and filtering phytosociological inventories, preprocessing data, and unifying it for comparative analysis. The main outputs are a Venn diagram displaying shared and unique species, and a CSV table detailing common and uncommon species. The workflow addresses filter application effectiveness, Venn diagram clarity, species table accuracy, and overall efficiency in processing and visualization, supporting ecological studies of plant distribution. Background Comparative analysis of phytosociological inventories across different natural spaces is essential for understanding plant distribution. This workflow focuses on downloading inventories stored in the database, applying distinct filters for each natural space, and conducting a comparative analysis of shared and unique plant species. The primary output includes a Venn diagram representing species intersections and a CSV table detailing common and uncommon plant species across the selected natural spaces. Introduction In ecological studies, understanding the overlap and uniqueness of plant species across different natural spaces is crucial. This workflow employs phytosociological inventories stored in the database, downloading them separately for each natural space using specific filters. The workflow then conducts a comparative analysis, identifying shared and unique plant species. The visualization includes a Venn diagram for easy interpretation and a CSV table highlighting the common and uncommon species across the selected natural spaces. Aims The primary aim of this workflow is to facilitate the comparison of phytosociological inventories from different natural spaces, emphasizing shared and unique plant species. The workflow includes the following key components: - Inventory Download and Preprocessing: Downloads phytosociological inventories from the database, applies specific filters for each natural space, and preprocesses the data to retain only the species present in each zone. - Data Unification: Unifies the processed data into a single dataset, facilitating comparative analysis. - Venn Diagram Representation: Generates a Venn diagram to visually represent the overlap and uniqueness of plant species across the selected natural spaces. - Species Table Generation: Creates a CSV table showcasing common and uncommon plant species in the selected natural spaces. Scientific Questions - Filter Application Effectiveness: How effectively does the workflow apply distinct filters to download inventories for each natural space? - Venn Diagram Interpretation: How intuitive and informative is the Venn diagram representation of shared and unique plant species across the selected natural spaces? - Species Table Accuracy: How accurate is the CSV table in presenting common and uncommon plant species in the comparative analysis? - Workflow Efficiency: How efficiently does the workflow streamline the entire process, from data download to visualization, for comparative phytosociological analysis?
-
This workflow streamlines the export, preprocessing, and analysis of phytosociological inventories from a project database. The workflow's goals include exporting and preprocessing inventories, conducting statistical analyses, and using interactive graphs to visualize species dominance, altitudinal distribution, average coverage, similarity clusters, and species interactions. It also calculates and visualizes the fidelity index for species co-occurrence. This workflow addresses key scientific questions about dominant species, distribution patterns, species coverage, inventory similarity, species interactions, and co-occurrence probabilities, aiding efficient vegetation management in environmental projects. Background Efficient vegetation management in environmental projects necessitates a detailed analysis of phytosociological inventories. This workflow streamlines the export and preprocessing of vegetation inventories from the project database. Subsequently, it conducts various statistical analyses and graphical representations, offering a comprehensive view of plant composition and interactions. Introduction In the realm of vegetation research, the availability of phytosociological data is paramount. This workflow empowers users to specify parameters for exporting vegetation inventories, performs preprocessing, and conducts diverse statistical analyses. The resulting insights are visually represented through interactive graphs, highlighting predominant species, altitudinal ranges of plant communities, average species coverage, similarity clusters, and interactive species interactions. Aims The primary objectives of this workflow are tailored to address specific challenges and goals inherent in the analysis of phytosociological inventories: 1. Export and Preprocess Inventories: Enable the export and preprocessing of phytosociological inventories stored in the project database. 2. Statistical Analyses of Species and Plant Communities: Conduct detailed statistical analyses on the species and plant communities present in the inventories. 3. Interactive Graphical Representation: Utilize interactive graphs to represent predominant species, altitudinal ranges of plant communities, and average species coverage. 4. Similarity Dendrogram: Generate a dendrogram grouping similar phytosociological inventories based on the similarity of their species content. 5. Interactive Species Interaction Analysis: Visualize species interactions through interactive graphs, facilitating the identification of species that tend to coexist. 6. Calculation and Visualization of Fidelity Index: Calculate the fidelity index between species and visually represent the probability of two or more species co-occurring in the same inventory. Scientific Questions This workflow addresses critical scientific questions related to the analysis of phytosociological inventories: - Dominant Species Identification: Which species emerge as predominant in the phytosociological inventories, and what is their frequency of occurrence? - Altitudinal Distribution Patterns: How are plant communities distributed across altitudinal ranges, and are there discernible patterns? - Average Species Coverage Assessment: What is the average coverage of plant species, and how does it vary across different inventories? - Similarity in Inventory Content: How are phytosociological inventories grouped based on the similarity of their species content? - Species Interaction Dynamics: Which species exhibit notable interactive dynamics, and how can these interactions be visualized? - Fidelity Between Species: What is the likelihood that two or more species co-occur in the same inventory, and how does this fidelity vary across species pairs?
-
The workflow "Pollen Trends Analysis with AeRobiology" leverages the AeRobiology library to manage and analyze time-series data of airborne pollen particles. Aimed at understanding the temporal dynamics of different pollen types, this workflow ensures data quality, profiles seasonal trends, and explores temporal variations. It integrates advanced features for analyzing pollen concentrations and their correlation with meteorological variables, offering comprehensive insights into pollen behavior over time. The workflow enhances data accessibility, facilitating broader research and public health applications. Background In the dynamic landscape of environmental research and public health, the AeRobiology library (https://cran.r-project.org/web/packages/AeRobiology/index.html) emerges as a potent instrument tailored for managing diverse airborne particle data. As the prevalence of airborne pollen-related challenges intensifies, understanding the nuanced temporal trends in different pollen types becomes imperative. AeRobiology not only addresses data quality concerns but also offers specialized tools for unraveling intricate insights into the temporal dynamics of various pollen types. Introduction Amidst the complexities of environmental research, particularly in the context of health studies, the meticulous analysis of airborne particles—specifically various pollen types—takes center stage. This workflow, harnessing the capabilities of AeRobiology, adopts a holistic approach to process and analyze time-series data. Focused on deciphering the temporal nuances of pollen seasons, this workflow aims to significantly contribute to our understanding of the temporal dynamics of different airborne particle types. Aims The primary objectives of this workflow are tailored to address specific challenges and goals inherent in the analysis of time series pollen samples: - Holistic Data Quality Assurance: Conduct a detailed examination of time-series data for various pollen types, ensuring completeness and accuracy to establish a robust foundation for subsequent analysis. - Pollen-Specific Seasonal Profiling: Leverage AeRobiology's advanced features to calculate and visually represent key parameters of the seasonal trends for different pollen types, offering a comprehensive profile of their temporal dynamics. - Temporal Dynamics Exploration: Investigate the temporal trends in concentrations of various pollen types, providing valuable insights into their evolving nature over time. - Enhanced Accessibility: Employ AeRobiology's interactive tools to democratize the exploration of time-series data, making complex information accessible to a broader audience of researchers and professionals. Scientific Questions This workflow addresses critical scientific questions related to pollen analysis: - Distinct Temporal Signatures: What are the discernible patterns and trends in the temporal dynamics of different airborne pollen types, especially during peak seasons? - Pollen-Specific Abundance Variability: How does the abundance of various pollen types vary throughout their respective seasons, and what environmental factors contribute to these fluctuations? - Meteorological Correlations: Are there statistically significant correlations between the concentrations of different pollen types and specific meteorological variables, elucidating the influencing factors unique to each type? - Cross-Annual Comparative Analysis: Through the lens of AeRobiology, how do the temporal trends of different pollen types compare across different years, and what contextual factors might explain observed variations?