Keyword

species distribution modelling

29 record(s)
 
Type of resources
Keywords
Contact for the resource
Years
status
Groups
From 1 - 10 / 29
  • Framework for microclimate and mechanistic niche models. It provides an interface to a suite of biophysical modelling algorithms including the Niche Mapper system.

  • A set of functions for reproducible and shareable analysis of models from an online repository, comparing and diagnostic models. The package has been developed specifically to improve reproducibility and comparability of SDMs in R by allowing users to encode entire SDM analyses as repeatable and extensible workflows consisting of independently executable, community-contributed modules. The module-workflow structure enables scientists to more easily create and share components of their analysis, and then, access, modify, reuse and combine the components of others.

  • This package is a versatile tool that aims at (1) defining the minimum background extent necessary to fit Species Distribution Models reliable enough to extract ecologically relevant conclusions from them and (2) optimizing the modelling process in terms of computation demands. See Rotllan-Puig, X. & Traveset, A. (2021) https://www.sciencedirect.com/science/article/pii/S0304380020304191

  • The package allows users to create and evaluate ensembles of species distribution model (SDM) predictions. Functionality is offered through R functions or a GUI (R Shiny app). This tool can assist users in identifying spatial uncertainties and making informed conservation and management decisions.

  • A user-friendly framework that enables the training and the evaluation of species distribution models (SDMs). The package implements functions for data driven variable selection and model tuning and includes numerous utilities to display the results. All the functions used to select variables or to tune model hyperparameters have an interactive real-time chart displayed in the 'RStudio' viewer pane during their execution.

  • The package provides a likelihood-based approach to modeling species distributions using presence-only data. In contrast to the popular software program Maxent, this approach yields estimates of the probability of occurrence, which is a natural descriptor of a species' distribution.

  • The package includes a set of procedures to fit species distributions models from occurrence records and environmental variables, using 'glmnet' for model fitting. Model structure is the same as for the 'Maxent' Java package, version 3.4.0, with the same feature types and regularization options.

  • The package provides tools for designing comprehensive multi-factor SDM ensemble experiments, combining multiple sources of uncertainty (e.g. baseline climate, pseudo-absence realizations, SDM techniques, future projections) and allowing to assess their contribution to the overall spread of the ensemble projection. In addition, mopa is seamlessly integrated with the climate4R bundle and allows straightforward retrieval and post-processing of state-of-the-art climate datasets (including observations and climate change projections), thus facilitating the proper analysis of key uncertainty factors related to climate data.

  • The package includes several methods that helps users to create virtual distribution map. Such maps can be used for Species Distribution Modelling (SDM) studies, which use environmental data for sites of occurrence of a species to predict all the sites where the environmental conditions are suitable for the species to persist, and may be expected to occur.

  • The package analyses species distribution models and evaluates their performance. It includes functions for variation partitioning, extracting variable importance, computing several metrics of model discrimination and calibration performance, optimizing prediction thresholds based on a number of criteria, performing multivariate environmental similarity surface (MESS) analysis, and displaying various analytical plots.